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Abstract 

We study reheating in theories where inflation is completed by a first-order phase 
transition. In these scenarios, the Universe decays from its false vacuum state by bubble 
nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy 
for the bubble walls. To help understand this phase we derive a simple expression for the 
equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls 
collide. We present numerical simulations of two-bubble collisions clarifying and extending 
previous work by Hawking, Moss, and Stewart. Our results indicate that wall energy is 
efficiently converted into coherent scalar waves. We go on to discuss particle production 
due to quantum effects. These effects lead to the decay of the coherent scalar waves. In 
addition, they lead to direct particle production during bubble-wall collisions. We calculate 
particle production for colliding walls in both sine-Gordon and d4 theories and show that 
it is far more e5cient in the +4 csse. The relevance of our work for recently proposed 
models of first-order inflation is discussed. 
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1. Introduction 

In Guth’s original version of inflation [I], the Universe decays from its initial false- 
vacuum state by the nucleation of true-vacuum bubbles. As the bubbles expand, the 
energy in the false vacuum is converted into kinetic energy for the bubble walls. In theory, 
the walls eventually collide, the true vacuum percolates, and wall energy is converted into 
radiation, reheating the Universe. Unfortunately, in Guth’s model the nucleation and 
expansion of bubbles cannot keep up with the exponential expansion of the regions still 
trapped in the false vacuum, and the true vxuum never percolates [2]. This is known in 
the literature as the ‘graceful exit’ problem. 

Clearly, first-order inflation (generically, any model in which inflation is completed 
by a strongly first-order phase transition) can work if either the nucleation or expansion 
rate changes during the inflationary phase. For example, in the extended inflation scenario 
proposed by La and Steinhardt [3] the Hubble parameter in the vacuum-energy dominated 
(p = -p) Universe decreases with time, thus enabling the true vacuum to percolate. While 
La and Steinhardt’s proposal suffered a graceful exit problem of its own [4], there has been 
no shortage of theories which purport to save the general idea of first-order inflation [S]. 

Given the renewed interest in first-order inflation, we felt it an opportune time to 
examine some of the nuts and bolts of reheating in these models. Reheating in new [6] and 
chaotic [7] inflation has been examined in some detail [8]. The analysis in these scenarios 
is simplified by the fact that the Universe can be treated as homogeneous (Friedmann- 
Robertson-Walker) throughout. Inflation occurs when some order parameter or scalar 
field finds itself displaced from the minimum of its potential. At first, the field slowly 
rolls towards this minimum. During this phase the energy density p of the Universe is 
dominated by vacuum energy with p = const’ s pvae; the pressure p = -p; and the scale 
factor a K eHlt, where Hj = 8~rp,,,/3m$. (We use units where h. = c = kB = 1 and 

mpt = G,att,, - N 10’gGeV is the Planck mass). As the inflaton reaches the minimum, 
the slope of the potential increases and the field begins to oscillate about the minimum 
on a time scale short compared to the Hubble time. These oscillations behave at first like 
pressureless nonrelativistic matter so that a cc t 2/3 Eventually, the oscillations decay into 
relativistic particles and the Universe becomes radiation-dominated. We note that if the 
lifetime of the inflaton is long compared to Hy’ , most of the energy in the 4 field will be 
diluted by cosmological expansion and the reheat temperature TRH ( N (mpll?+)‘/‘) will 

be well below P,,,,~, 1’4 the energy scale associated with the false vacuum. 
The physics of reheating in first-order inflation is essentially the same as in new and 

chaotic inflation: Energy initially stored in a coherent scalar field must be converted into 
radiation. However, the situation is considerably more difficult to analyze. Here, both 
the field 4 and the metric are inhomogeneous. Furthermore, reheating involves a mix of 
quantum physics (bubble nucleation and particle creation) and classical physics (expansion 
and collisions of bubbles). Difficulties aside, a number of authors have focused on the 
potentially rich phenomenology associated with these scenarios. For example, it has been 
suggested that gravitational waves [9], black holes [lO][ll], topological defects (121, and the 
baryon asymmetry [13][11] may have been produced during the phase transition. Whether 
or not such phenomena actually occur depends in part on the details of reheating. For 



example, in the baryogenesis scenario of Ref.[13] ‘t i is important to know the spectrum of 
particles produced in wall collisions. 

This work represents a modest attempt at understanding the mechanics of reheating in 
first-order inflation. Reheating in these models involves three processes: bubble expansion; 
bubble collisions; and particle production. As discussed above, bubble expansion is the 
process whereby the energy stored in the (false) vacuum is converted into kinetic energy of 
the bubble wails. During this time, p/p increases from its initial value of -1. In Section 3 
we derive a simple expression for the equation of state of a universe dominated by bubbles 
which are expanding but have not yet collided. In Section 4 we consider the classical 
evolution of colliding bubbles and focus on the production of classical scalar waves. This is 
the dominant process for converting wall energy into a form that can decay into radiation 
and is therefore a crucial intermediate step in the reheating process. Our results indicate 
that wall energy is efficiently converted into scalar waves, though it is fair to say that 
we have not explored the entire range of bubble parameters. If indeed scalar waves are 
efficiently produced, then reheating will occur much as it does in new and chaotic inflation, 
and the reheat temperature will be set by the decay width of the inflaton. Alternatively, if 
this is not the case, scalar dynamics will play the dominant role in determining the reheat 
temp~erature. In Section 5 we show how to calculate the quantum particle production rate 
from classical scalar field configurations. We apply our methods to the case of interacting 
domain wails and determine the number of particles produced during a collision. We focus 
on the difference between walls which arise in $4 theories and those which arise in sine- 
Gordon (SG) theories and show that, at least for relativistic walls, particle production is 
far more e5cient in the 44 case. Section 6 presents some conclusions and a discussion of 
the relevance our work has for first-order inflation scenarios. 

2. Preliminaries 

In a first-order phase transition, the Universe decays from a metsstable state by bubble 
nucleation. A nucleated bubble is essentially a true vacuum fluctuation that is large enough 
to grow classically. In inflation the phase transition occurs at essentially zero temperature, 
and bubble nucleation takes place through quantum fluctuations. 

The nucleation rate is determined by considering the most likely fluctuation that is 
able to grow. Coleman [14] (see also Ref.[15]) h as shown that this most likely fluctuation is 
a spherical bubble nucleated at rest with a certain critical size determined by microphysics. 
Coleman’s method will be discussed in Section 4. Here we review some basic properties 
of ‘critical’ bubbles in an expanding universe. Consider the theory of a real scalar field 4 
described by the Lagrangiau 

I: = ;a,@+$ - V(4) (2.1) 

where V(d) has two nondegenerate minima. For definiteness, we take the potential to be 

‘V($q = ; (P - 4:)’ + 4: (4 + 40) 
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though any asymmetric double-well potential will do. We shall generically refer to models 
of this type as 44 models. Focus for the moment on the case where E < X so that the energy 
difference between true and false minima is small compared to the height of the barrier. To 
lowest order in E, the true and false minima are at -40 and do respectively. The mass of 
&excitations in either of these minima is given by m+ = X’/2$0, and pvac = 2440. E < X 
corresponds to the thin-wall limit in which the radius of the bubbles is much greater than 
the thickness of the wall separating the interior true vacuum region from the exterior false 
vacuum region. One nice feature of the thin-wall limit is that the properties of individual 
bubbles can be determined analytically. In particular, the thickness of the bubble wall is 
A = 2/ (Xl/“&,) = 2m;‘, the surface energy density is o = 2X1/2&/3, and the radius of 

the bubble at the time of nucleation is R, = X1/‘/ (~4~) = 3a/pvac. l&/A N X/c > 1 so 
the bubble walls are indeed thin. 

The results quoted above are valid so long as gravity is not important. Gravity be- 
comes important when the radius of the bubbles becomes comparable to the Hubble radius 

[IS]. For the case at hand, the Hubble radius is given by He1 = 
[ 
8rpvac /3m;,3 -l’* 1L 

mpl/ (e’/“&). RH N (X/E)~‘~ &,/ mrr is therefore a measure of how important gravity is. 
The nucleation rate per unit volume (number of bubbles nucleated per unit four- 

volume) is [17] 
l? II A (vL+)~ e--sE (2.3) 

where A is a constant of order unity and SE is the Euclidean action for the bounce solution 
corresponding to a critical bubble. For the thin wall case, SE = a2X2/3c3. Perhaps the 
most important parameter describing a first-order inflation theory is n s I’/H4, the so- 
called percolation parameter. 7 gives roughly the number of bubbles nucleated per horizon 
volume per Hubble time. For the case at hand 

q N (G)’ (2?2>, e-*ZA=/3c3 (2.4) 

The requirement that inflation last long enough to solve the horizon and flatness problems 
constrains n to be less than about 10V3, whereas percolation of the true vacuum bubbles 
can only occur if I) > O(O.l). In Guth’s model, 7 is constant and the model is untenable. 
In the models of Ref.[5] , n varies in time; a period of inflation with q < 10e3 precedes the 
percolation phase in which n is large. 

The mean separation between bubbles is roughly D 1: F114 = ~I-‘/~H-’ N 
(x’/“(bo) -’ eSEi4. Certainly, a key unknown is the value (or range of values) n has when 
percolation occurs. (Remember that n is increasing with time.) For n >> 1, D will be less 
than the Hubble radius and there will be many bubbles within a given Hubble volume. In 
this case, cosmological expansion can be neglected in treating the dynamics of the bubbles. 
On the other hand, if 7 - 1 when percolation occurs, D will be of order the horizon and 
cosmological expansion will play an essential role in the bubble dynamics. In what follows 
we will neglect, for the most part, cosmological expansion in treating the bubbles, but only 
because it simplifies the calculations. We leave the full problem of bubble dynamics in an 
expanding spacetime for future investigations. 
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As we will see, the ratio R,/D is also essential in describing the phase transition. Once 
a bubble is nucleated it begins to expand, and the velocity of the walls rapidly approaches 
the speed of light. The surface energy density and thickness of a wall depend on its velocity 
k c dR/dt, or equivalently on the relativistic Lorentz factor 7 = l/J=; the energy 
density grows like 7 and the thickness decreases like y -I. These properties determine to a 
large degree the masses and quantities of particles produced in a collision between walls. 
For subhorizon-sized bubbles, 7 = R(t)/Ro [14] The quantity D/R, therefore tells us 
how relativistic the walls are before they collide. In our example, D/R, = (c/X) e”2xz/‘2c9. 

3. Expanding Bubbles 

During reheating the equation of state of the Universe changes from p = -p (vacuum 
dominated) to p = p/3 (radiation dominated). The first step in this process is the nu- 
cleation and expansion of bubbles during which vacuum energy is converted into kinetic 
energy for the walls. 

We can be a bit more quantitative by considering an idealized model of a universe filled 
with bubbles that are expanding but have not yet collided. Let us assume R, < D < H-‘, 
so that self-gravity and cosmological expansion effects on the evolution of the bubbles can 
be neglected. In addition, we assume that all of the bubbles are nucleated simultaneously. 
In principle, each of these assumptions can be relaxed; we believe, however, that the 
simplified case considered here adequately illustrates the physics we are interested in. We 
now derive the equation of state for our idealized universe (A similar analysis for a general 
domain wall network was carried out in [18]). Th is is done by calculating the average 
energy and pressure densities for a sphere of radius D centered about a single bubble of 
radius R(t). In particular, we calculate 

p=R-’ 
J 

d3zToo 

p = -n-l 
J 

d3,pi 
(3.1) 

where R E 4rD3/3, TJ”’ is the stress energy for the intlaton field, and i = 1,2,3. 
We consider the contributions to the average energy and pressure densities from the 

false vacuum region outside the bubble and the bubble wall separately. For the contribution 
from the false vacuum we find 

R= 
Pfdae vacuuI11 = pvac ( > l--ijz 

(3.2) 
Ffal*e vacuum = -Pfalse YaCUUm 

We treat the bubble wall as an infinitesimally thin shell of stress-energy and use the Gauss- 
Codazzi formalism as developed by Israel [19]. Let <” be the unit spacelike normal to the 

wall hypersurface. For an expanding bubble E” = (r’l, y sin 0 cos cp, y sin t7 sin (D, y cos 6’). 
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Let Tay be the stress energy for the wall. In the thin wall approximation Tay has a S- 
function singularity across the wall. It is convenient to define the quantity 

Sab E 
I 

dl T$ (3.3) 

where 1 is the proper distance through the surface in the direction of &. We note that 
dl = 7dr. 

The three metric intrinsic to the wall is 

hrrb = gab - t-atb (3.4) 

For domain walls, Sob = -oh,+ In addition bubbles nucleated by quantum tunneling have 
3olRo = Pvae. It is straightfoward to show that 

o-1 &T,y = 37(TR2 
03 

R3 = Pvacg3 

0-1 d%T;y = p,.,$ 

Combining Eq.(3.2) and Eq.(3.5) we find 

~~:‘1~~“~=(?.(,,3(~-,,) 

(3.5) 

For R < D, Is N -pvae as expected; the Universe in this case is essentially dominated by 
vacuum energy. If, on the other hand, bubbles are nucleated with R, N D, then p = -2p/3 
right after nucleation. This is just the equation of state for a wall-dominated Universe. 
In fact, the Universe is still undergoing power-law inflation when the bubbles first collide 
[20]. Finally, if R, < D, the walls will be relativistic by the time they collide, and the 
equation of state just before bubble collisions will be p = p/3. 

4. Bubble Collisions: Classical Treatment 

Bubble collisions provide the next step in reheating. Collisions release energy bound in 
the walls through both quantum and classical processes. Quantum effects will be discussed 
in Section 5. Here, we treat the bubble walls as classical field configurations and show that 
classical scalar waves are emitted during a collision. We explore this process by studying 
the collision of two expanding bubbles. 

5 



The two-bubble problem was studied by Hawking, Moss, and Stewart (HMS). Here, 
we elucidate their results and extend the analysis to include discussion relevant to the 
problem at hand. HMS considered theories in which the true vacuum manifold consists 
of a degenerate family of local minima. In particular, they considered a scalar-Yang-Mills 
gauge theory in which the true vacuum manifold is a circle of radius r~, so that inside a given 
bubble 4 = r@. HMS followed the collision of two bubbles, focusing on the case where 
the phase a differs from one bubble to the next. They showed that energy in the bubble 
walls is released in the form of phase waves, and that the amount of radiation depends on 
the difference in a from one bubble to the next. Here we consider the simpler theory of 
a real scalar field with a nondegenerate vacuum. As we will see, energy is released in the 
form of coherent scalar waves. Evidently, the complexity of the HMS model is unnecessary 
for reheating. 

It is important to bear in mind that two-bubble (or few-bubble for that matter) 
collisions are inefficient at producing large thermalized regions [2]. Reheating in first- 
order inflation is necessarily a many-bubble process. However, we can learn much from 
two-bubble collisions that is relevant for the general problem. 

The initial configuration and subsequent evolution of the scalar field for the two-bubble 
problem discussed here is rather special and depends on the physics of bubble nucleation 
in the context of false vacuum decay. We therefore take some time to review the basics of 
vacuum decay. Coleman [14] has developed a simple technique for calculating the bubble 
nucleation rate in flat space and at zero temperature baaed on the Euclidean path integral 
formulation of scalar field theory. He finds that the nucleation rate is proportional to 
,@E where SE is the Euclidean action for a solution to the Euclidean equations of motion. 
Becanse of the exponential dependence on SE, we are only interested in the solution of least 
action, which in Bat space is the O(4) symmetric ‘bounce’ solution. The field configuration 
of a critical bubble (discussed above) is just the r = 0 slice of the ‘bounce’ solution. 

The evolution of an expanding bubble can be determined in one of two ways. First, 
we can take the field configuration of a critical bubble as initial data and evolve this 
configuration forward in time. A simpler and more elegant approach takes advantage 
of the high degree of symmetry in the problem. As noted by Coleman, the Lorentzian 
equations of motion are just the analytic continuation of the Euclidean equations, and the 
real time evolution of a bubble is given by the analytic continuation of the Euclidean bounce 
solution. The O(4) symmetry in Euclidean space carries over to an O(3,l) symmetry in 
Minkowski space. 

Proper use of the O(3,l) symmetry requires two coordinate systems to cover all of 
Minkowski space. For ]d > ]t] (Region I) we choose the coordinates (p, $, 0, up) where 

I = pcoshij,sinBcosy, z = pcosh11,cos6 

y = pcosh$sinBsin(o t = psinh$ . 
(4.1) 

In these coordinates, and with the assumption of O(3,l) symmetry, the equations of motion 
are identical to those in Euclidean space with O(4) symmetry, and the Euclidean bounce 
solution gives the field configuration for an expanding bubble. 
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For Irl < ItI (Region II), we require a different coordinate system (p’, $J’> 0,~) with 

z = p’ sinh @sin B cos ‘p z = p’ sinh I$ cos B 

y = p’ sinh $’ sin B sin (o t = p’coshijr’ 
(4.2) 

In order to find the field configuration in this region one needs to take the field configuration 
on the p = 0 hypersurface (from the Region I solution) and evolve into Region II. Since 
the field configuration only depends on p this amounts to solving an ordinary differential 
equation. For a single thin-wall bubble, the bubble wall is entirely in Region I. The field 
is essentially constant in Region II, so that ,evolving the field is usually unnecessary. 

The situation changes with more than one bubble. Consider the nucleation of two 
bubbles. In general this is a complicated process and one that has yet to be treated in 
the literature. If, however, the bubbles are widely separated at the time of nucleation, 
then they can be treated as noninteracting (the dilute instanton approximation), and the 
generalization from the single bounce solution is straightfoward. For two bubbles, the axis 
joining their centers will be a preferred direction, so that the solution to the Euclidean 
equations of motion for noninteracting bubbles will have O(3) symmetry. We consider 
first a coordinate system in which the r = 0 hypersurface intersects the centers of the 
two bubbles. The field configuration on this hypersurface becomes initial data for two 
simultaneously nucleated expanding bubbles in Minkowski space, and one could solve for 
the field configurations numerically by solving the classical equations of motion. As in the 
single bubble case, a more efficient technique for finding the evolution exploits the extra 
boost symmetry of the problem. Here the O(3) symmetry of the two-bubble Euclidean 
bounce translates to an O(2,l) symmetry in Minkowski space. Let the z-axis correspond 
to the the line of the bubbles. As before, spacetime is divided into 
two regions. For ItI < the coordinates (s, ~J!J, 8, z) with 

I = scosh$sinB Z=% 

y = scosh+cosO t = ssinh$ 
(4.3) 

The solution in this region of spacetime is given by the analytic continuation of the two 
bubble bounce solution. For ItI > dw we take 

z = s’ sinh $’ sin 0 .%=7. 

y = s’ sinh +’ cos 0 t = s’cosh$’ . 
(4.4) 

To find the field configuration in this region, we take the solution on the t = r G Jm 
hypersurface and solve the equations of motion. Here the equations we are required to 
solve are 1 + 1 (s and Z) partial differential equations. For the two bubble case, all of the 
interaction between the bubbles takes place in this second region. 

The procedure outlined above was developed and used by HMS. Here we consider 
bubbles in a theory described by Eqs.(2.1,2.2) with e = 0.1. In Fig. la, we show the field 
d(s, Z) in the collision region for two simultaneously nucleated bubbles. In Fig. lb, the 
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separation between the bubbles has been doubled. The figures illustrate that the general 
behavior of the field scales with D and is roughly independent of R, and A. This result 
holds so long as D > (R,, A). 

It is useful to view the collision in physical coordinates. For example, Fig. 1 also 
gives the r = 0, t - z spacetime diagram. Fig. 2 shows the collision in the t - T plane for 
fixed .z, while snapshots at different times are shown in Fig. 3. An observer near z = 0 
will alternate between false and true vacua. Observers at different values of T will see the 
same sequence of events but at different times. For example, if an observer at T = 0 sees 
the false vacuum change to true at t = to then an observer at T = ~1 will see false change 
to true at a time ti = -7. 

The results described above also give the field configuration for a big bubble colliding 
with a small bubble. Because of the O(2,l) symmetry, an observer Lorentz-boosted in 
either the I or y directions will see the same field configuration as given above. How- 
ever, to an observer moving in the z direction one bubble will appear to be nucleated 
before the other. In this frame, the bubble which is nucleated first will be larger at the 
time of the collision. The field configurations in the two frames are related by a Lorentz 
transformation. 

Let us be a bit more quantitative. Consider two bubbles, nucleated about the space- 
time events t = 2: = y = z = 0 and t = t,, z = z,, z = y = 0, where Z, > t,. The 
two bubbles will first collide at Z, = Z, + t,v’ 

( 1 - Rz/ (~2 - t$)) /2, I = y = 0 and 

t, = dm. Th e ratio of the bubble radii when they first collide is z,/ (z, - zc). For 
Rz > ~2 - tz, this is just (zO + to) / (zO - to). A L orentz transformation with vu, = to/z, 
will give us the field configuration for two equal sized bubbles separated by a distance 
20 = z,,/Y. Now consider the radiation that is produced during the collision. In the 
equal-bubble frame, the radiation is symmetric about z = 0 and moves outward from the 
collision region. Suppose that in the equal-bubble frame, a scalar wave has a z-component 
of velocity u, (recall that these are massive excitations). In the Lorentz-boosted frame, it 
will have velocity vi = (vO + v,) / (1 + v),v,). Clearly, a wave with ]uu,] < IV,] will be mov- 
ing away from the center of the large bubble when viewed in the Lorentz-boosted frame. 
A schematic of this situation is shown in Fig. 4. 

Weinberg [4] has pointed out that bubbles nucleated early in the epoch of inflation 
are too large by the end of inflation to thermalize. The discussion here illustrates that 
thermalization of big bubbles by collisions with smaller bubbles may be more difficult 
than expected, since much of the radiation released in the collision may continue to move 
outward from the center of the large bubble. Ultimately, this issue will have to be resolved 
by numerical simulation. 

As noted by HMS (and evidenced in the figures) when two domain walls collide they 
do not immediately annihilate into a burst of radiation. Rather, the two walls reflect 
off of one another and are then drawn back together by the false vacuum pressure for 
another collision. In general, each collision releases some fraction of the walls’ energy into 
scalar waves, and all of the energy is eventually radiated away. In the example shown in 
the figures, most of the energy is radiated away in a time interval re 2 tf - ti = O(D), 
where ti is the time when the walls first collide and tf is the point where most of the 
energy has been dissipated. Here tf and ti are defined for an observer at the origin. For 
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an observer at t = 0 but arbitrary T, r(r) = dp - m. For r << (t;,tr), 

r(r) = re (1 - r2/2t;tr) whereas for T >> (t;,t,), r(r) = 70 (ti + tf) /2~. In either case, the 
time interval decreases with increasing T, a result which can be read off of Fig. 2. 

We have carried out a variety of numerical studies and found that generally the radia- 
tion of scalar waves is reasonably efficient. For example, in the simulations described above 
we find that most of the energy in the center of the two-bubble system is radiated away 
after only a few collisions. This result holds for a wide range of initial separations. We 
have also simulated the collision of two infinite plane walls in a theory with a symmetric 
double well potential (Eq.(2.2) with s = 0) and find that the percentage of energy radiated 
during a single collision is roughly constant and N 30-40% for a wide range (0.3 < 7 < 10) 
of initial velocities (see, for example, Ref.[21)). 

One can also consider first-order inflation in sine-Gordon (SG)-type theories. Here 
the potential is of the form 

v = A& (cm (yg + V*(d) (4.5) 

where there are N local minima at ~+6 = 2n&, and VA creates a small asymmetry among 
these minima. For the most part, the dynamics of wall-wall interactions is determined 
by the first term in V. As is well known, SG kinks in a theory with VA = 0 are true 
solitons, and infinite plane-symmetric walls pass through one another without dissipating 
any energy. However, if the walls are curved (or if VA # 0) they will produce scalar 
radiation [22], though not as efficiently as d4 walls. Reheating, in fact may be very different 
in these models (see also Section 5), though no detailed work has yet been done. 

5. Particle Production 

In order to reheat the Universe, the inflaton must couple to ordinary particles. This 
will allow the classical scalar waves described above to decay, eventually filling the Universe 
with a thermal bath at a temperature TRH. These couplings also lead to direct production 
of particles during collisions between walls. 

In this section we discuss this direct particle production. In particular, we con- 
sider production of fermions arising from interactions of the form Li = gr&& and 
Ls = ~3sf-‘~7~+8’~, where f has units of mass. Lr is the typical Yukawa coupling of a 
scalar field to fermions. &-type couplings arise if 4 is a Goldstone (or pseudo-Goldstone) 
boson. In this case, the potential for 4 is of the sine-Gordon (SG) type. As we will see, 
particle production in these two theories is dramatically different, though this is due as 
much to the peculiar properties of the SG walls as to the different form of the coupling 
between 4 and $J. 

Our philosophy is to treat 4 (the bubbles or walls) as a classical, external field and the 
fermions as quantum fields in the presence of this source (see, for example, Ref. [23]). In 
so doing we make no attempt to treat backreaction of particle production on the evolution 
of the walls. 
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The probability of producing at least one pair of particles is 

PHI = 2 Im(IVl) (5.1) 

where I’[+] is just the generating functional of one particle irreducible Green’s functions: 

l--Ml = ft2$ J d4x1 d4z,l?(“) (q , . . . ,G%) 4(4 4(x,) (5.2) 

l?[+] is also known as the effective action. In writing Eq.(5.1) we have assumed that 
P>1 < 1. 

To leading order 

rkbl = i J d4x1 d4x2 4(x1) 4(xz) r(‘) (XI,XZ) 

or 

i(r[d]) = i / d4x1 d4x2 4(x1) 4(x2) / $$ eip-(21-z2) Im (l?2)(pz)) (5.4) 

where ?(21(p2) is the Fourier transform of r(‘) (zi,zs). For either Li or &, the leading 

contribution to Im comes in at the one-loop level. For -Cl we find that 

Im (P)(p2)) = s (I- !.$)3” 0 ($ _ 4Pz) 

where p is the mass of 11. Similarly, for &J we have 

Im (l?‘)(p’)) = $$ (1 - g) 3’2 0 (p2 - 4n2) 

Let J(p) = s d4x .s~P’~ 4(z) be the Fourier transform of 4 We then have 

Im(Wl) = 1% I&P)I~ Im p2)@2)) 

(5.5) 

(5.6) 

(5.7) 

This formula has a rather simple interpretation. The Fourier transform decomposes the 
scalar field into modes of definite four-momentum. Modes with p2 > 0 represent propa- 
gating “particles” with mass M ’ = p2. (In general M2 # m2, and these ‘particles’ are 
off-shell. However, they can still decay into on-shell fermions.) Eq.(5.7) sums over the 
number of particles with mass M contained in the field multiplied by the probability for 
those particles to decay. The B-function in Eq.(5.5) enforces the fact that only particles 
with M > 2~ can decay. 
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As a first example, consider an infinite plane-symmetric domain wall. To keep things 
simple we assume a model with degenerate vacua so that a noninteracting wall will move 
with constant velocity. Since the result must be Lorentz-invariant, we can work in the rest 
frame of the wall. Clearly, in this frame ps = 0 for all modes, so that p2 < 0 and there is 
no particle production. 

Next, consider the head-on collision of two plane-symmetric walls. The walls can come 
from either d4 or SG theories. As we will see, the crucial difference between the two models 
is that $4 walls scatter off one another while SG walls pass through one another. 

In principle, the calculation should be straightforward. One starts with the field 
configuration describing a collision. In the case of plane-symmetric walls moving in the 
z-direction, +(?, t) = d(Q). The next step is to calculate the Fourier transform. Here 
$(i,w) = (2*)2S(~,)S(k,)~(k,,w). The final step is to substitute into Eq.(5.7) and inte- 
grate over p. This will give the number of particles produced per unit area: 

N -= 
A 

2 
I 

$-$ IJ(.~,w)~~ Im (Pc2) (w’ - li”)) 

where Ic z k,. 
The field configuration for colliding $4-walls can be found numerically. However, the 

result will be quite complicated, as the scattering of two $4 walls is inelastic. In general, 
scalar waves are produced in the collision whose decay will contribute to the particle 
production. It is difficult to untangle this contribution from that of the actual collision. 
We therefore choose to model the collision by treating the walls as infinitesimally thin and 
assuming that the scattering is perfectly elastic. This model should give accurate results 
for k < ym+ and w < ym+/v in the case of relativistic walls. 

Our ansatz for the field configuration is 

for vt < t < -vt and t < 0; 
for -vt < z < vt and t > 0; 
otherwise 

and the Fourier transform of the field is 

&b) = ,Jy&ko2+ . 

(5.9) 

The slow power law-fall off at large w2 - k2v2 is due to the fact that in our ansatz, 4 
is discontinuous. For realistic “thick” domain walls, 4 would cut off exponentially for 
k 2 -ym,+ and w 2 ym,+/v. Substituting Eqs.(5.5,5.10) into Eq.(5.7) we estimate 

N 
-Ng~&ln ?!J? 
A ( > 2P 

(5.11) 

where we have assumed that yrn+ > 2~ and 7 >> 1. The energy per unit area radiated by 
the walls is 

E 
- = sT&rm+ A 

(5.12) 
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which represents a fraction gf of the total energy in the walls in their center of mass frame. 
As an ansatz for colliding, infinitely-thin SG walls, we take 

for t < 0 and 

for vt < t < -vt ; 
otherwise 

d = 
{ ’ 

;p zhI;w;s; < -?A ; (5.14) 

for t > 0. Here we assume a potential of the form Eq.(4,5)with N = 1 so that C#J = ~$+2+~n. 
The Fourier transform of this field configuration is 

$(k, w) = F (6(w+kv)-b(w-kv)) . 

We see that 4 is zero for p2 = w2 - k2 > 0, implying that the number of particles produced 
is zero. Evidently, the particle production we have calculated in the 44 case is due entirely 
to the fact that the walls reflect off of each other. 

In the SG case it is easy to improve on this simplistic ansatz. In models with VA = 0 
there are exact analytical solutions for multi-soliton configurations. In particular, the field 
configuration for two domain walls traveling from .z = &co with velocities ~:u is [24] 

d%'A(&t) = - 460 tan-l 

a 
(5.16) 

where -y = l/J- and th e normalization is chosen to coincide with Eqs.(5.13,5.14) 
The subscript ‘SA’ is borrowed from Ref.[24] and indicates that we are colliding a soliton 
and an antisoliton. We now calculate the Fourier transform of Eq.(5.16). The transform 
over z can be done using an integration by parts and we find 

$(k,t) = z 
sin (*) sinh (yvm,&) 

sinh ( j) cash * 
( > 

(5.17) 

where p = cash-’ (1 + 2wm2 sinh2 (yum+,t)). W e now assume that the walls arc relativistic 
and expand in l/y. Eq.(5.17) becomes 

&k,t) N %cosi- $ 

(-) 

(sin(vkt) + L 
2r3m4 

cos (vkt) tanh (yvm&) (5.18) 

277% 

The first term corresponds to the result found in Eq.(5.15) and will not contribute to the 
particle production rate. For the second term we use the following transform: 

du eibu cos au tanh cu = 
Jrn 

du tanh cu (sin (a + b)u + sin (a - b)u) 
0 

= E (sinh-’ (“(“2: b)) + sinh-’ (“(“,L I))) 

(5.19) 
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The final result can be written in the form 

$(w, k) N - 
sinh 

74mi cash (e) - cash ($-) 
(5.20) 

This result is similar in many respects to Eq.(5.10). For w < yurn+ and k < 7m+, 
4 cx (w’ - u2 k2) -‘. In addition 4 is exponentially damped for larger values of k and w, as 
anticipated above. We estimate that the number of particles produced per unit area is 

N 

( > 

2 

3 --M 7f A 

and the energy lost per unit area is 

E 

( > 

2 

- z d#trm+ E!? 
A rf 

(5.22) 

where again we have assumed that 7m+ > 2~. This represents a fraction (g2m+/-yf)2 
of the total energy in the walls and is less than that found in the C#J~ case by a factor 
(m+,/f)2r-2. The (m+/f)’ term comes from the nature of the coupling Ls and is usually 
quite small. 

Particle production in this case is due to a slight slowing down of the walls during 
their interaction. As 7 becomes large, the forces between the walls are able to effect a 
smaller change in velocity, leading to a smaller result for N/A. In principle, there will be 
similar effects in the 44 case leading to corrections of order l/7” to Eqs. (5.11) and (5.12). 

Evidently, we can produce particles up to energy 7m. If the bubble walls are highly 
relativistic when they collide, there will be the possibility of producing particles well above 
the mass of the inflaton. 

6. Conclusions 

It is relatively easy to find a cosmological scenario which inflates. The challenge is 
in bringing an end to inflation so that the resultant universe resembles the one we live 
in. The vacuum energy which drives inflation must be converted into relativistic particles. 
Furthermore, fluctuations which arise during inflation should not lead to unacceptably 
large distortions in the microwave background. It is a bonus if they provide the seed 
perturbations necessary to drive the formation of large-scale structure. In addition, relics 
of the inflationary epoch such as gravity waves and topological defects may have survived 
until the present epoch. If detected these phenomena would provide a window to the very 
early Unverse. 

The search for a truly graceful exit from inflation has had limited success. As is 
well known, most new and chaotic inflation scenarios require ‘fine tuning’ to satisfy the 
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microwave background constraints. Moreover, the spectrum of fluctuations arising in the 
simplest models appears to be inconsistent with observations of large-scale structure. In 
an attempt to overcome these difficulties, researchers have turned to alternative ways of 
implementing inflation. Extended and two-field inflation are two models arising from such 
a program. These theories invoke Guth’s original idea that inflation proceed by a first 
order phase transition and have sparked a renewed interest in first-order inflation. 

In this work, we begin to study the details reheating in first-order inflation. The ulti- 
mate goal of course is to predict, for a given model, the reheat temperature and spectrum 
of particles produced. Though we have not yet been reached this goal, we have devel- 
oped the computational tools necessary to carry out such calculations. In particular, we 
have studied the expansion and collisions of bubbles as well as particle production from 
quantum effects. 

Our results indicate that energy in bubble walls is efficiently converted into scalar 
radiation when the walls collide, suggesting that reheating in these models is not all that 
different from reheating in new and chaotic inflation. However, caution should be used 
in applying this result to all models. As noted in Section 2, there are four parameters 
describing a first-order inflation model (A, R,, D, and H or X, E, n,and m,l) some 
or all of which vary in time during both inflation and reheating. There may indeed be 
regimes of parameter space in which energy stays in walls for a fairly long period of time. 
Furthermore, walls in sine-Gordon type theories are far less dissipative. In these theories, 
energy might remain in coherent scalar field configurations for many Hubble times leading 
to a lower reheat temperature. 

Finally, we have studied particle production during wall collisions. We find that the 
results differ markedly depending on whether the walls pass through each other or are 
reflected, but are otherwise independent of the details of the model considered. We note 
that this work may have applications to particle production from scalar field configurations 
in other contexts such as late-time phase transitions. 

First order inflation theories have a potentially rich phenomenology. The key is to find 
some observable consequence which will determine whether or not a first order inflationary 
phase transition occured in the early Universe. We hope that this work will aid in these 
investigations. 
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Figure Captions 

1. Spacetime diagram for a two bubble collision. The diagram gives the field configu- 
ration in the s’ - z plane (t > dm). The nucleation sites are at the bottom 
righthand and bottom lefthand corners of the digram. The false vacuum is shown in 
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black, the true vacuum in light gray. Regions where ++ < -+,, appear white. In Fig. 
lb the initial separation beteen the bubbles has been doubled and the coordinates 
have been scaled by a factor l/2. 

2. Spacetime diagram in the t - T plane for the two-bubble collision shown in Fig. la. 
For this diagram, t = 0. 

3. Field configuration shown at different times during the collision. Note the scalar 
radiation emanating from the collision region. 

4. Spacetime diagrams illustrating a big bubble hitting a small bubble. Fig. 4a shows 
the two-bubble collision in the equal bubble (simultaneous-nucleation) frame. Here, 
the radiation is symmetric about z = 0. Fig. 4b shows the same configuration in a 
Lorentz-boosted frame. The bubble on the left is nucleated first and is larger at the 
time of the collision. In this frame, all of the radiation is moving to the right, away 
from the nucleation site of the big bubble. 
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